Energy Dissipation and Transport in Nanoscale Devices

نویسنده

  • Eric Pop
چکیده

Understanding energy dissipation and transport in nanoscale structures is of great importance for the design of energy-efficient circuits and energy-conversion systems. This is also a rich domain for fundamental discoveries at the intersection of electron, lattice (phonon), and optical (photon) interactions. This review presents recent progress in understanding and manipulation of energy dissipation and transport in nanoscale solid-state structures. First, the landscape of power usage from nanoscale transistors (~10–8 W) to massive data centers (~109 W) is surveyed. Then, focus is given to energy dissipation in nanoscale circuits, silicon transistors, carbon nanostructures, and semiconductor nanowires. Concepts of steady-state and transient thermal transport are also reviewed in the context of nanoscale devices with sub-nanosecond switching times. Finally, recent directions regarding energy transport are reviewed, including electrical and thermal conductivity of nanostructures, thermal rectification, and the role of ubiquitous material interfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency.

Understanding thermal transport from nanoscale heat sources is important for a fundamental description of energy flow in materials, as well as for many technological applications including thermal management in nanoelectronics and optoelectronics, thermoelectric devices, nanoenhanced photovoltaics, and nanoparticle-mediated thermal therapies. Thermal transport at the nanoscale is fundamentally ...

متن کامل

Imaging, simulation, and electrostatic control of power dissipation in graphene devices.

We directly image hot spot formation in functioning mono- and bilayer graphene field effect transistors (GFETs) using infrared thermal microscopy. Correlating with an electrical-thermal transport model provides insight into carrier distributions, fields, and GFET power dissipation. The hot spot corresponds to the location of minimum charge density along the GFET; by changing the applied bias, t...

متن کامل

A new regime of nanoscale thermal transport : collective behavior counteracts dissipation inefficiency

Understanding thermal transport from nanoscale hot spots is important for a fundamental description of energy transport in materials, as well as many technological applications including thermal management in nanoelectronics, thermoelectric devices, nano-enhanced photovoltaics and nanoparticle-mediated thermal therapies. Heat transfer at the nanoscale is fundamentally different from that at the...

متن کامل

Evaluation of efficiency index of friction energy dissipation devices using endurance time method

Various methods have been presented to improve the performance of buildings against earthquakes. Friction damper device is one of the energy dissipation devices that appropriately absorbs and dissipates the input energy and decreases displacements. In this paper, the possibility of using endurance time method to determine the efficiency index and optimum slip load for these dampers was investig...

متن کامل

Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams.

Fourier theory of thermal transport considers heat transport as a diffusive process where energy flow is driven by a temperature gradient. However, this is not valid at length scales smaller than the mean free path for the energy carriers in a material, which can be hundreds of nanometres in crystalline materials at room temperature. In this case, heat flow will become 'ballistic'--driven by di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010